Kang-Kun Lee

Kang-Kun Lee

Seoul National University

Professor

School of Earth and Environmental Sciences

Research Area

  • #Groundwater
  • #Environmental science
  • #Aquifer
  • #Geology
  • #Hydrology
  • #Soil science
  • #Contamination
  • #Hydrogeology
  • #TRACER
  • #Environmental chemistry

Get access to
Contact information

Log in

Related papers to
‘ Groundwater ‘ : 41

  • A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions

    2016/05

    2.5 Impact Factor

    68 citations

    Heesung Yoon, Yunjung Hyun, Kyoochul Ha, Kang-Kun Lee, Gyoo-Bum Kim

    DOI : 10.1016/J.CAGEO.2016.03.002

    • #Computer science
    • #Artificial intelligence
    • #Data mining
    • #Machine learning
    • #Artificial neural network
    • #Support vector machine
    • #Groundwater
    • #Predictive modelling
    • #Error function
    • #Level data
    • #A-weighting
    • #Recursive prediction

All papers authored by
‘ Kang-Kun Lee ’ : 59

  • Managing injection-induced seismic risks.

    2019/05
    SCIENCE

    41.8 Impact Factor

    82 citations

    Kang-Kun Lee, William L. Ellsworth, Domenico Giardini, John Townend, Shemin Ge, Toshihiko Shimamoto, In-Wook Yeo, Tae-Seob Kang, Junkee Rhie, Dong‐Hoon Sheen, Chandong Chang, Jeong-Ung Woo, Cornelius Langenbruch

    DOI : 10.1126/SCIENCE.AAX1878

    • #Geology
    • #Emergency medicine
    • #MEDLINE

Related papers to
‘ Groundwater ‘ : 41

  • A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions

    2016/05
    COMPUTERS & GEOSCIENCES

    2.5 Impact Factor

    68 citations

    Heesung Yoon, Yunjung Hyun, Kyoochul Ha, Kang-Kun Lee, Gyoo-Bum Kim

    DOI : 10.1016/J.CAGEO.2016.03.002

    • #Computer science
    • #Artificial intelligence
    • #Data mining
    • #Machine learning
    • #Artificial neural network
    • #Support vector machine
    • #Groundwater
    • #Predictive modelling
    • #Error function
    • #Level data
    • #A-weighting
    • #Recursive prediction
  • Importance of thermal dispersivity in designing groundwater heat pump (GWHP) system: Field and numerical study

    2015/11
    RENEWABLE ENERGY

    3.4 Impact Factor

    27 citations

    Byeong-Hak Park, Gwang-Ok Bae, Kang-Kun Lee

    DOI : 10.1016/J.RENENE.2015.04.036

    • #Environmental science
    • #Geotechnical engineering
    • #Soil science
    • #Thermal
    • #Computer simulation
    • #Groundwater
    • #TRACER
    • #Aquifer
    • #Flow velocity
    • #Heat pump
    • #Groundwater flow

Get access to
Contact information

Log in

All papers authored by
‘ Kang-Kun Lee ’ : 59

  • Managing injection-induced seismic risks.

    2019/05
    SCIENCE

    41.8 Impact Factor

    82 citations

    Kang-Kun Lee, William L. Ellsworth, Domenico Giardini, John Townend, Shemin Ge, Toshihiko Shimamoto, In-Wook Yeo, Tae-Seob Kang, Junkee Rhie, Dong‐Hoon Sheen, Chandong Chang, Jeong-Ung Woo, Cornelius Langenbruch

    DOI : 10.1126/SCIENCE.AAX1878

    • #Geology
    • #Emergency medicine
    • #MEDLINE
  • A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions

    2016/05
    COMPUTERS & GEOSCIENCES

    2.5 Impact Factor

    68 citations

    Heesung Yoon, Yunjung Hyun, Kyoochul Ha, Kang-Kun Lee, Gyoo-Bum Kim

    DOI : 10.1016/J.CAGEO.2016.03.002

    • #Computer science
    • #Artificial intelligence
    • #Data mining
    • #Machine learning
    • #Artificial neural network
    • #Support vector machine
    • #Groundwater
    • #Predictive modelling
    • #Error function
    • #Level data
    • #A-weighting
    • #Recursive prediction

Get access to Contact information

Log in
scholarship

Are you Thesis Advisor?
Register and Get Benefits from PhD.GO!

Learn more

Blog

Learn more about scholarship of
Seoul National University

Learn more